

## CHUMPOL NGAMPHIW, PH.D.

NATIONAL CENTER FOR GENETICS ENGINEERING AND BIOTECHNOLOGY (BIOTEC) NATIONAL SCIENCE AND TECHNOLOGY DEVELOPMENT AGENCY (NSTDA)

"GENOME ASSEMBLY AND ANNOTATION" : AUGUST 6-9, 2018 @ KUKPS

# CONTENT

- What is Linux ?
- Why Linux ?
- Why Linux in Bioinformatics ?
- Linux Distribution
- Linux File System
- Access to Linux Server
- Basic Linux Commands
- Basic Shell Programming
- HPC Resources

# WHAT IS LINUX ?

The Linux operating system (OS) was first coded by a Finnish computer programmer called **Linus Benedict Torvalds** in 1991, <u>when he was just 21!</u> He had got a new 386, and he found the existing DOS and UNIX too expensive and inadequate.

In those days, a UNIX-like tiny, free OS called **Minix** was extensively used for academic purposes. Since its source code was available, <u>Linus decided to take Minix as a model</u>.



7 2

Dperating System

## WHY LINUX ?

3

- Linux is a complete operating system:
  - stable the crash of an application is much less likely to bring down the OS under Linux.
  - Reliable Linux servers are often up for hundreds of days compared with the regular reboots required with a Windows system.
  - extremely powerful
- Linux comes with a complete development environment, including compilers, toolkits, and scripting languages

4

# WHY LINUX ? (CONT.)

- Linux comes with **networking** facilities, allowing you to share hardware.
- Ideal environment to run servers such as a web server, or an ftp server.
- A wide variety of commercial software is available if not satisfied by the free software
- Easily upgradeable.
- Supports multiple processors.
- True multi-tasking, multi-user OS.
- An excellent window system called X, the equivalent of Windows but much more flexible.
- Full source code is provided and free.

# WHY LINUX IN BIOINFORMATICS ?

- One definition of bioinformatics is "the use of computers to analyze biological problems."
- As biological data sets have grown larger and biological problems have become more complex, the requirements for computing power have also grown.
- Computers that can provide this power generally use the Unix/Linux operating system so you must learn Unix/Linux.
- Linux/UNIX has powerful text processing tools which are highly suited to working with sequence data.
- While many bioinformatics tools have Web interfaces, many more are available via the UNIX/Linux command line.

# WHY LINUX IN BIOINFORMATICS ? (CONT.)

- Linux/Unix is very stable computers running Linux/ Unix almost never crash.
- Linux/Unix is very efficient
  - it gets maximum number crunching power out of your processor (and multiple processors)
  - it can smoothly manage extremely huge amounts of data
- Most new bioinformatics software is created for Unix/Linux - its easy for the programmers.

7



## Which Linux Distribution is better ?

- > 300 Linux Distributions
- Slackware (one of the oldest, simple and stable distro.)
- Redhat
  - RHEL (commercially support)
  - Fedora (free)
- CentOS (free RHEL, based in England)
- SuSe ( based in German)
- Gentoo (Source code based)
- Debian (one of the few called GNU/Linux)
- Ubuntu (based in South Africa)
- Knoppix (first LiveCD distro.)
- Bio-Linux (http://environmentalomics.org/bio-linux-download/)

9

• ...



# TYPE OF FILE SYSTEM IN LINUX

- File system types can be classified into disk file systems, network file systems and parallel file systems.
- A disk file system is a file system designed for the storage of files on a data storage device, most commonly a disk drive e.g. FAT, NTFS, ext2, ext3, ext4 etc.
- A network file system is a file system that acts as a client for a remote file access protocol, providing access to files on a server e.g. NFS, SMB etc.
- A parallel file system is a file system that designed to store data across multiple networked servers and to facilitate highperformance access through simultaneous, coordinated input/ output operations (IOPS) between clients and storage nodes e.g. IBM GPFS, Lustre.

11

## LINUX FILE SYSTEM

- Linux has an hierarchical, unified file system
- Supports 256-character filenames.
- All command line entries are **case sensitive**.
- Use the slash(/) rather than the backslash(\) you have been using in DOS.







# INUX PERMISSION r = Read Permission w = Write Permission x = Execute Permission by command "chmod number filename" number calculate by r = 4 (100), w = 2 (010), x = 1 (001), - = 0

## LINUX PERMISSION

## Example

• 
$$rwxr-xr-x = 755$$

- rwxrwx--- = 770
- drwxr-xr-x = directory
- -rwxr-xr-x = file

## 17

## **ACCESS TO LINUX SERVER**

- Use secure shell login (ssh)
- From Linux / MacOSX
  - Use Terminal application
    - \$ ssh username@hostname
- From Windows OS
  - Putty (<u>https://www.chiark.greenend.org.uk/~sgtatham/putty/</u> <u>latest.html</u>)
  - SSHSecureShellClient (<u>http://www4a.biotec.or.th/hpc/wp-content/uploads/2009/10/SSHSecureShellClient-3.2.9.exe</u>)

| BASIC C                                                                                                                                                                                                                                                                                           | OMMANDS                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Is</li> <li>\$ Is -I</li> <li>\$ Is -a</li> <li>\$ Is -Ia</li> <li>\$ Is -It</li> <li>\$ Is -IS</li> <li>cd</li> <li>\$ cd /usr/bin</li> <li>pwd</li> <li>\$ pwd</li> <li>\$ pwd</li> <li>\$ cd ~</li> <li>\$ cd ~</li> <li>\$ cd ~user1</li> <li>What will "cd ~/user1" do ?</li> </ul> | <ul> <li>which</li> <li>\$ which is</li> <li>where is</li> <li>\$ where is is</li> <li>locate</li> <li>\$ locate stdio.h</li> <li>\$ locate iostream</li> <li>\$ locate iostream</li> <li>\$ locate iostream</li> <li>\$ rpm -q bash</li> <li>\$ rpm -q bash</li> <li>\$ rpm -qa   sort   less</li> <li>find</li> <li>\$ find / l grep stdio.h</li> <li>\$ find / l grep stdio.h</li> </ul> |
|                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                          |

٦

Г

| <ul> <li>echo</li> <li>\$ echo "Hello World"</li> <li>\$ echo -n "Hello World"</li> <li>cat</li> <li>\$ cat /etc/motd</li> <li>\$ cat /proc/cpuinfo</li> <li>cp</li> <li>\$ cp foo bar</li> <li>\$ cp -a foo bar</li> <li>\$ cp -a foo bar</li> <li>mv</li> <li>\$ mv foo bar</li> <li>mkdir</li> <li>\$ mkdir test</li> <li>\$ mkdir -p test/test1</li> </ul> | <ul> <li>rm</li> <li>\$ rm foo</li> <li>\$ rm -rf foo</li> <li>\$ rm -i foo</li> <li>\$ rm foo</li> <li>\$ rmfoo</li> <li>finger</li> <li>\$ finger</li> <li>\$ finger</li> <li>\$ finger</li> <li>\$ chgrp bar /home/foo</li> <li>chsh</li> <li>\$ chsh foo</li> <li>chfn</li> <li>\$ chsh foo</li> <li>chfn</li> <li>\$ chfn foo</li> <li>chown</li> <li>\$ chown -R foo:bar /home/foo</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# **BASIC COMMANDS (CONT)**

- man
  - \$ man ls
- tar
  - \$ tar cvfp lab1.tar lab1
- gzip
  - \$ gzip -9 lab1.tar
- untar & ungzip
  - \$ gzip -cd lab1.tar.gz | tar xvf –
  - \$ tar **x**vf**z** lab1.tar.gz
- tar & bzip2
  - \$ tar cvfj lab1
- touch
  - \$ touch foo
  - \$ cat /dev/null > foo

## • Pipe

- \$ cal > foo
- \$ cat /dev/zero > foo
- \$ cat < /etc/passwd
- \$ echo 'Test append' >> test1.txt
- \$ who | cut -d' ' -f1 | sort | uniq | wc -l
- backtick
  - \$ echo "The date is `date`"
  - \$ echo `seq 1 10`
- Hard, soft (symbolic) link
  - In vmlinuz-2.6.24.4 vmlinuz
  - In -s firefox-2.0.0.3 firefox

21

## **BASIC COMMANDS (CONT)**

- Disk usage
  - \$ df -h /
- File space usage
  - \$ du -sxh ~/
- Display Linux processes
  - \$ top
- Clear screen display
  - \$ clear
- Create multiple terminals
  - \$ screen
  - https://www.tecmint.com/screen-command-examples-to-manage-linuxterminals/

# BASIC COMMANDS (CONT) Change file or directory permission Example \$ mkdir public\_html \$ chmod 755 public\_html \$ ls -l Change permission can use relative permission for change by 'u', 'g' or 'o' u = owner, g = group, o = other + = add permission, - = remove permission Example rw-r--r-- change to rw-rw-r- \$ chmod g+w test rw-r--r-- change to rwxrwxr-x \$ chmod ug+wx, o+x test rwxrwxr-x change to rwxr--r--

• \$ chmod go-wx test

23

# **BASIC COMMANDS (CONT)**

- Change owner of files or directory
- \$ chown [username].[groupname] [option] files
- option
  - -R, Change owner in subdirectory
  - -f, Ignore error
  - \$ chown user test.txt
  - \$ chown test.test homework.c
  - \$ chown test:test test.txt
  - \$ chown user1.group1 -R /home/

# **BASIC COMMANDS (CONT)**

## • View file contents

- \$ more test1.txt
- \$ head test1.txt
- \$ tail -f test1.txt # output the last part of files; output appended data as the file grows
- \$ head -**n** test1.txt # output the first **n** lines of files
- \$ tail -n test1.txt # output the last n lines of files

## • Print newline, word and byte counts for each file

• \$ wc test1.txt

## • File pattern searcher

- \$ grep 'test' file1 # match search
- \$ grep -v 'test' file1 # not matching search
- \$ grep -E 'test1ltest2' file1 # contain test1 or test2 in a file

## • Cut out selected portions of each line from each file

- \$ cut -d ' ' -f 1 test1.txt
- \$ cut -d\$'\t' -f 2 test1.txt
  - -d define the field delimiter; use \$'\t' for tab-delimited
  - -f define the specifies fields; we can specifies multiple fields such as -f 1,2,3

25

# Shano test1.txt Nodified Image: State and Stat

## **VI/VIM EDITOR**

## 2 modes

- Input mode
- Command mode
- ESC to back to cmd mode

## Cursor movement

- h (left), j (down), k (up), l (right)
- ^f (page down)
- ^b (page up)
- ^ (first char.)
- \$ (last char.)
- G (bottom page)
- :1 (goto first line)
- Switch to input mode
  - a (append)
  - i (insert)
  - o (insert line after)
  - O (insert line before)

- Delete
  - dd (delete a line)
  - d10d (delete 10 lines)
  - d\$ (delete till end of line)
  - dG (delete till end of file)
  - x (current char.)
- Paste
  - p (paste after)
  - P (paste before)
- Undo
  - u
  - Search
  - /text
- Save/Quit
  - :w (write)
  - :q (quit)
  - :wq (write and quit)
  - :q! (give up changes)

### 27

## **BASIC SHELL COMMANDS**

- TCSH
- BASH (Bourne Again Shell) http://www.tldp.org/LDP/Bash-Beginners-Guide/html/Bash-Beginners-Guide.html
- For loop

| [user@agcipher ~]\$ | for i i | n `cat | '/etc/ | basswd'`; | do | name=`ech | 5 \$i | cut | -d | ':' | -f | 1`; | echo | \$name; | done |
|---------------------|---------|--------|--------|-----------|----|-----------|-------|-----|----|-----|----|-----|------|---------|------|
| root                |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| bin                 |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| daemon              |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| adm                 |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| lp                  |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| sync                |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| shutdown            |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| halt                |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| mail                |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| operator            |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| games               |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| ftp                 |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| User                |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| nobody              |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| systemd-bus-proxy   |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| Bus                 |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| Proxy               |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| systemd-network     |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| Network             |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| Management          |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| dbus                |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| message             |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| bus                 |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| polkitd             |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| for                 |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| polkitd             |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| abrt                |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| unbound             |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |
| L                   |         |        |        |           |    |           |       |     |    |     |    |     |      |         |      |

## **BASH SHELL ENVIRONMENTS**

## .bash\_profile vs .bashrc

**.bash\_profile** is executed for login shells, while **.bashrc** is executed for interactive non-login shells. When you login (type username and password) via console, either sitting at the machine, or remotely via ssh: **.bash\_profile** is executed to configure your shell before the initial command prompt

- export PATH
- export LD\_LIBRARY\_PATH
- Set shell prompt
  - \$ export PS1="[\u@\h \W]\\\$"
- Scripts arguments
  - \$ ./test.sh arg1 arg2 arg3

# test.sh

#!/bin/env bash

./a.out \$1 \$2 \$3

29









